(8-3x)(5x+2)=4x(11-4x)

Simple and best practice solution for (8-3x)(5x+2)=4x(11-4x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8-3x)(5x+2)=4x(11-4x) equation:



(8-3x)(5x+2)=4x(11-4x)
We move all terms to the left:
(8-3x)(5x+2)-(4x(11-4x))=0
We add all the numbers together, and all the variables
(-3x+8)(5x+2)-(4x(-4x+11))=0
We multiply parentheses ..
(-15x^2-6x+40x+16)-(4x(-4x+11))=0
We calculate terms in parentheses: -(4x(-4x+11)), so:
4x(-4x+11)
We multiply parentheses
-16x^2+44x
Back to the equation:
-(-16x^2+44x)
We get rid of parentheses
-15x^2+16x^2-6x+40x-44x+16=0
We add all the numbers together, and all the variables
x^2-10x+16=0
a = 1; b = -10; c = +16;
Δ = b2-4ac
Δ = -102-4·1·16
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6}{2*1}=\frac{4}{2} =2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6}{2*1}=\frac{16}{2} =8 $

See similar equations:

| 5x/2-3=2x+5 | | 25x+15=30x-10 | | (X-90)+(x-90)+80=180 | | 2/3/x=6 | | X+(x-35)+3X=180° | | 2^n=92 | | 4(3x–5)–13=7x-3 | | 3(2x-12)=180 | | X+(x-35)+3X=180 | | X+(+-35)+3x=180 | | 2/3(p+3)=1/4(p-3) | | 6(2x–1)–10=2(5x–1) | | 5(4x+2)-6=3(4x+4 | | 5(4x+2)–6=3(4x+4) | | X+36=86-x | | 2x+(4x+30)+(2x+70)=180 | | 2y/3y+2=-2/3 | | 2x+3000=6x | | 2x+(4×+30)+(2×+70)=180 | | 100x²+482x-45=0 | | 3(2x–3)–13=2(x–1) | | 16u^2-12u-1=0 | | (2y)^4=3(2y)^2+1 | | 3x+2/2+7=x-3 | | 100x×x+482x-45=0 | | 100x^2+482x-45=0 | | 4(3w+8)/3=7 | | -8t+11t^2+14t=11t^2-17 | | 3m+5=2m+1 | | 35+.03x=45+.02x | | 6(t+5)=-3(X+2) | | -n+8=14n=2 |

Equations solver categories