If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=-16x-12=0
We move all terms to the left:
4x^2-(-16x-12)=0
We get rid of parentheses
4x^2+16x+12=0
a = 4; b = 16; c = +12;
Δ = b2-4ac
Δ = 162-4·4·12
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8}{2*4}=\frac{-8}{8} =-1 $
| 20x2-17x-63=0 | | 5/8y+y=78 | | 5(2+k)=9 | | 5(1-x)^2-x(X-3)+2=6(x3-3x-7)-2x(x+5) | | 5m=-8 | | -7x+6=x-10 | | 8(g-5)=16 | | -4x+44=5x-46 | | 42-3/2r=21-3/4r | | 5(1-x)^2-x(X-3)+2=6(x^3-3x-7)-2x(x+5) | | 21x+5/20=-1 | | -8x+16=6x+2 | | 5(1-x)2-x(X-3)+2=6(x3-3x-7)-2x(x+5) | | Q+2p=10 | | 9x-7=-9x+11 | | 8x+22=-5x-30 | | -7x+14=3x-16 | | x+17=8x+73 | | (x+2)+(6x)+(4x+2)=180 | | -6x-39=9 | | -7x+55=9x-57 | | x+x+1/3=7 | | (x-8)+(x-8)+(4x+4)=180 | | 10x-62=-8x+64 | | -4x-4(3-4x)=5(x-4)-20 | | 10x+19x-8+5=-8x+5-8 | | (x-2)+(x+2)+2x+x/2=45 | | x+(5x-3)+(6x+3)=180 | | 2n3-3=9 | | 4p-3=13p=0 | | 4(x-1)+2=1/2(x+5) | | 4p-3=13p=-4 |