If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-17x-63=0
a = 20; b = -17; c = -63;
Δ = b2-4ac
Δ = -172-4·20·(-63)
Δ = 5329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5329}=73$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-73}{2*20}=\frac{-56}{40} =-1+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+73}{2*20}=\frac{90}{40} =2+1/4 $
| 5/8y+y=78 | | 5(2+k)=9 | | 5(1-x)^2-x(X-3)+2=6(x3-3x-7)-2x(x+5) | | 5m=-8 | | -7x+6=x-10 | | 8(g-5)=16 | | -4x+44=5x-46 | | 42-3/2r=21-3/4r | | 5(1-x)^2-x(X-3)+2=6(x^3-3x-7)-2x(x+5) | | 21x+5/20=-1 | | -8x+16=6x+2 | | 5(1-x)2-x(X-3)+2=6(x3-3x-7)-2x(x+5) | | Q+2p=10 | | 9x-7=-9x+11 | | 8x+22=-5x-30 | | -7x+14=3x-16 | | x+17=8x+73 | | (x+2)+(6x)+(4x+2)=180 | | -6x-39=9 | | -7x+55=9x-57 | | x+x+1/3=7 | | (x-8)+(x-8)+(4x+4)=180 | | 10x-62=-8x+64 | | -4x-4(3-4x)=5(x-4)-20 | | 10x+19x-8+5=-8x+5-8 | | (x-2)+(x+2)+2x+x/2=45 | | x+(5x-3)+(6x+3)=180 | | 2n3-3=9 | | 4p-3=13p=0 | | 4(x-1)+2=1/2(x+5) | | 4p-3=13p=-4 | | 2/3x+1=7/15x+3 |