If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+13x+8=0
a = 4; b = 13; c = +8;
Δ = b2-4ac
Δ = 132-4·4·8
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{41}}{2*4}=\frac{-13-\sqrt{41}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{41}}{2*4}=\frac{-13+\sqrt{41}}{8} $
| (1/6)(12z-18)=2z-3 | | -3-6x=6+x-7x | | d+-4=12 | | (1/5)(15b-7)=3b=9 | | 3k^2+26k=-16 | | 4x-5+2x=13+9x=21 | | 4x+82(8+3x)=10 | | 7u+41=3(u+3) | | 6(u-7)=4u-32 | | l+6.5=34 | | 5(2x–3)=-1–4x | | 2.5xx=30 | | -3(4x-8)=2(x+3) | | 9u-42=6(u-9) | | 6x+50=152 | | 1/25=0.165(t-60)+4.8 | | 3x+x-5x=-5-8 | | 75=-5x+45 | | 8y+1-4y=17 | | -5u+8(u-8)=-37 | | 5w=11=19 | | 18=3x-35 | | 29=3y+8(y+5) | | 1=7t+1 | | 1/25=0.165|t-60|+4.8 | | 17-(x-2)=4-(x+10) | | 4(5x+5)=5(4x+4 | | -28=3v+5(v-4) | | 3m+2-2=5×-2 | | 4c-10=76 | | 6-6x=6x-10x- | | –1=d3 |