If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2-100=0
a = 4; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·4·(-100)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*4}=\frac{-40}{8} =-5 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*4}=\frac{40}{8} =5 $
| 212+48x=380 | | 2,100=2x | | 10(-15y+155)+y=40 | | -8m+9=-1-6m-10 | | 5k2+12k-108=0 | | 5t^2+23t+10=0 | | 9/4x+7=½-x | | 2(-x-1)+5=x+10 | | 24x+8-4x+1=9 | | 3(x+20)+44=180 | | 2n2+n-55=0 | | X-4=3x*8 | | 5.2-3.05x=1+6.15x | | 3r2-11r+8=0 | | 4(x-3)+36=64-4(x+2) | | n2+7n+12=0 | | -8=1.3-2.1m | | -9y²=-144 | | x-7-1=-10+4 | | 1/9t^2-1=0 | | 6n2-7n-49=0 | | q+2=8 | | 3(x+2)-2x=15 | | 2(u+4)=-2u+44 | | 14+w-11=19 | | (1/2)f-2=(1/6)f | | -11=-9-x3 | | 2x-8=4(-2-3x) | | -16+x/4=32 | | X2+4y2=8 | | (4x+8)=(7x+2/4) | | 6a2+2a-48=0 |