If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-9=0
a = 4; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·4·(-9)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*4}=\frac{-12}{8} =-1+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*4}=\frac{12}{8} =1+1/2 $
| 3/4(d+2)=-1 | | 2,100=2x+x | | 6h+50-h-57=-3h+2h+5h+6h | | 4r2-100=0 | | 212+48x=380 | | 2,100=2x | | 10(-15y+155)+y=40 | | -8m+9=-1-6m-10 | | 5k2+12k-108=0 | | 5t^2+23t+10=0 | | 9/4x+7=½-x | | 2(-x-1)+5=x+10 | | 24x+8-4x+1=9 | | 3(x+20)+44=180 | | 2n2+n-55=0 | | X-4=3x*8 | | 5.2-3.05x=1+6.15x | | 3r2-11r+8=0 | | 4(x-3)+36=64-4(x+2) | | n2+7n+12=0 | | -8=1.3-2.1m | | -9y²=-144 | | x-7-1=-10+4 | | 1/9t^2-1=0 | | 6n2-7n-49=0 | | q+2=8 | | 3(x+2)-2x=15 | | 2(u+4)=-2u+44 | | 14+w-11=19 | | (1/2)f-2=(1/6)f | | -11=-9-x3 | | 2x-8=4(-2-3x) |