4/t-3=t+1/t-3

Simple and best practice solution for 4/t-3=t+1/t-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/t-3=t+1/t-3 equation:



4/t-3=t+1/t-3
We move all terms to the left:
4/t-3-(t+1/t-3)=0
Domain of the equation: t!=0
t∈R
Domain of the equation: t-3)!=0
t∈R
We get rid of parentheses
4/t-t-1/t+3-3=0
We multiply all the terms by the denominator
-t*t+3*t-3*t+4-1=0
We add all the numbers together, and all the variables
-t*t+3=0
Wy multiply elements
-1t^2+3=0
a = -1; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-1)·3
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*-1}=\frac{0-2\sqrt{3}}{-2} =-\frac{2\sqrt{3}}{-2} =-\frac{\sqrt{3}}{-1} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*-1}=\frac{0+2\sqrt{3}}{-2} =\frac{2\sqrt{3}}{-2} =\frac{\sqrt{3}}{-1} $

See similar equations:

| 7u-8/2=3u-3/8+12 | | X2+2x-364=0 | | R-2*r-2=7 | | 7x-5+3x=35 | | -28+22x=180 | | (50-x)+(9x-40)=90 | | Y*y+15y+56=0 | | (5x-2)+12=(3x+20) | | 5x2-38x+48=0 | | 4-x-(2x+5)=x-7(x-2) | | 3x+2-5x=3(2x-5)-6x+5 | | 8n-2(n+5)=19 | | 2x+3x=8x | | x=7+-15 | | 2y2+9=11y-3 | | 1=3^n-2 | | 2/3x-2=14 | | 4x-3+2x-7=4(x-6)-3x | | 36=40.6650+0.5782x | | 3w-7/3=4/3w-4/5 | | 36=40+0.5x | | 6x+x/3=0 | | 4x^2-x-450=0 | | 2x^2-x-225=0 | | m-16=3 | | 6(b-8)=-(7b-4) | | x^2-57x=-800 | | 15.90x+7.50=55.20 | | 2x+3/2=180 | | 37p2+33p=0 | | x=8=5x+32-2x | | 3/2=(/10k |

Equations solver categories