If it's not what You are looking for type in the equation solver your own equation and let us solve it.
37p^2+33p=0
a = 37; b = 33; c = 0;
Δ = b2-4ac
Δ = 332-4·37·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-33}{2*37}=\frac{-66}{74} =-33/37 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+33}{2*37}=\frac{0}{74} =0 $
| x=8=5x+32-2x | | 3/2=(/10k | | -1x=0+2 | | 7a+8=71 | | 14+6d=-4 | | 14+6d=4 | | X+30+x-40=180 | | -6=3n+6 | | 5x-4x+3×+8=8 | | 38=4p | | 3x-16=19x-5 | | 7-10x=-143 | | 2/3(3x+9)=−2(2x+6 | | 2-(3-a)=-4+2=-2 | | 6^3x=20 | | 3(7+x)=5(7-(4)) | | 72÷n=12 | | 3×4^x+1-13×2^x=140 | | 7(3-6)=6(4+t | | n^2+9n-480=0 | | 10v=24+2v | | (-2x^2)+4x+1=0 | | 6t-14-3t=8(7-(2)) | | (x^2)-x-12=0 | | (1/x)-2/x+3=2/x+3 | | Z4+-1-i=0 | | x/6=0.2 | | 3/4m+3=21 | | 15u=-35 | | 198-5x=128 | | (5x+37)+(x+7)=52 | | 4x-4÷7=4x-10 |