If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-8x-11=0
a = 3; b = -8; c = -11;
Δ = b2-4ac
Δ = -82-4·3·(-11)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-14}{2*3}=\frac{-6}{6} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+14}{2*3}=\frac{22}{6} =3+2/3 $
| 2(2n-1)/5=3(1-2n)/7 | | 4x-4/5=3-6x/7 | | (9+y)(3y-8)=0 | | Y=5-4x2 | | 7(x+1)+3(3-x)=5(x-1)-3(2x+1) | | 7(x+1)+3(3-x)=5(x-1)-3(2x+1 | | 11x-(x+8)=14 | | 4u^2+6u^2-6u+13=0 | | 2x-25=25=2-7x | | 4x-4.6=7.4 | | 7p+15=43 | | (4.3x6.2)-(6.2x1.1)=4.3x(6.2-1.1) | | a2-3a=0 | | 6(1+8x)=58 | | 6(+8x)=54 | | 1/4(12x+8)-x=2(14-2x+6) | | 6a-8=26 | | -8+4x=-16+26 | | 6x=13=-71-8x | | 2x+30=16 | | 6x+23=-71-8x | | 5x+2-3x+7+7x=3x+27 | | 3x+4=2x+66 | | 4n+5=32 | | 21x-16=x | | 3x+24=7x−16, | | 56=3x+2 | | 1-7x=5(2x-10) | | 2x+5+x+4=18 | | 1/((3x)/8)^2=1/((x^2)+((3x)/8)^2) | | Y=1/((x^2)+((3x)/8)^2) | | X=-6x4 |