If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2-3a=0
We add all the numbers together, and all the variables
a^2-3a=0
a = 1; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*1}=\frac{0}{2} =0 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*1}=\frac{6}{2} =3 $
| 6(1+8x)=58 | | 6(+8x)=54 | | 1/4(12x+8)-x=2(14-2x+6) | | 6a-8=26 | | -8+4x=-16+26 | | 6x=13=-71-8x | | 2x+30=16 | | 6x+23=-71-8x | | 5x+2-3x+7+7x=3x+27 | | 3x+4=2x+66 | | 4n+5=32 | | 21x-16=x | | 3x+24=7x−16, | | 56=3x+2 | | 1-7x=5(2x-10) | | 2x+5+x+4=18 | | 1/((3x)/8)^2=1/((x^2)+((3x)/8)^2) | | Y=1/((x^2)+((3x)/8)^2) | | X=-6x4 | | 9i=4i+2 | | x*6+3=75 | | 2(4x+3)+3(2x-1)=32 | | (x-5)-(4x-5)=30 | | /x/2+7=2(x-7) | | x/2+7=2(x-7 | | 6s+35=185 | | 3m+8=22 | | 2x-1=-x-2 | | (2x-4)-16=0 | | 7x+1=-x | | 100=40+10a | | 5d-6=3D+12 |