If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-16=0
a = 3; b = 2; c = -16;
Δ = b2-4ac
Δ = 22-4·3·(-16)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-14}{2*3}=\frac{-16}{6} =-2+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+14}{2*3}=\frac{12}{6} =2 $
| 5/8=n/2 | | |-6x+11|=-2x+4 | | 0=x4-2x3+14x2-6x+5 | | Y=4x+52 | | 2y(y+18)=180 | | 2(4x+2)=7(x-5) | | 3.3=6.5-0.8x | | 4x−3/3=7 | | 10-7a=-9a+3 | | 3m+(3-m)=-1 | | 2+10=-4f | | 5(m-4)=5(m+2) | | 2x-x=7=x+3+4 | | 14x+3-x=4x+48 | | 63x+46=10 | | 3(x-4)+6=5(x-1)=1 | | x^2-9x-1=-9 | | 4x+3(7-2x)=20 | | 1/(1.2-x)-2/x=0 | | 4(m+6)-3=0 | | 3m+(3-m)=1 | | m2+2m-24=0 | | (x-3/25)=(x-5/12) | | 4(3-3y-1)=40 | | 1/2x=11.88 | | -7t=5.7 | | .7x=11.30 | | 5n+1/6=3n-5/4 | | 8(3n+1)=9(9n+6)+7 | | t+2+6/t=0 | | 64x^2+48+9=100 | | 5z-3=17+3 |