3*x*x=2*x*x+50

Simple and best practice solution for 3*x*x=2*x*x+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3*x*x=2*x*x+50 equation:



3x*x=2x*x+50
We move all terms to the left:
3x*x-(2x*x+50)=0
Wy multiply elements
3x^2-(2x*x+50)=0
We get rid of parentheses
3x^2-2x*x-50=0
Wy multiply elements
3x^2-2x^2-50=0
We add all the numbers together, and all the variables
x^2-50=0
a = 1; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·1·(-50)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*1}=\frac{0-10\sqrt{2}}{2} =-\frac{10\sqrt{2}}{2} =-5\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*1}=\frac{0+10\sqrt{2}}{2} =\frac{10\sqrt{2}}{2} =5\sqrt{2} $

See similar equations:

| 3*x*x=2*x*(x+50) | | 3*x=2*(x+50) | | x*x+2000x=5000 | | x*x+160x=8000 | | 17=u/4+8 | | 5z+8=37 | | (3x2+4)(x-6)=0 | | x/43000=0.68 | | x/25000=0.68 | | 2^x-4+2^x=136 | | -6x+7=-50 | | 8000=0.02x | | 3x2-280x+-3300=0 | | 2(2y+5)-2(4y-3)=0 | | 10a=(3a-4)+15 | | 7a=5(a-5)=+16 | | x/1.5=0.75 | | 0.10)(0.5)+0.35g=0.15(g+0.5 | | 16x+32=48 | | 13x-39=13 | | -7k-5=-26 | | 5x-25=-75 | | 12(y-1)=4(4y-3) | | 12(y-1=4(4y-3) | | 2(5x+6)=8(5x-5) | | -6(2c+4)=-72 | | (x/5)+3=x | | 4z+11=54 | | 3.1=y-1.2 | | 6.4^x+6.9^x=13.6^x | | 2x-90x+2000=0 | | -30-3z=48-2z |

Equations solver categories