If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x+14=54
We move all terms to the left:
2x^2+16x+14-(54)=0
We add all the numbers together, and all the variables
2x^2+16x-40=0
a = 2; b = 16; c = -40;
Δ = b2-4ac
Δ = 162-4·2·(-40)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-24}{2*2}=\frac{-40}{4} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+24}{2*2}=\frac{8}{4} =2 $
| -2=12+4(2x+7)+6 | | X+50)^2x=15 | | -2=12+4(2x+7 | | 1/3x+-3/4+5/6x=-2 | | X+50)^2x=21 | | (a+5)/3=3 | | 0.08(2.50n)+3=13.8 | | -x/9-5=-2 | | 2x^2+10x-42=0 | | 75-3.75(30-x)=2.25x | | 7.4x0.26= | | m=5/3;(9,8) | | 2x+4-3/3x=1/3(x+5) | | -(a-1)/4=-9 | | 7x-2+3x=180 | | 50x^2-x-950=0 | | (b-9)/2=-6 | | 3(4x+1)=2(3x+1) | | x³=1,125.10²³ | | x²=1,125.10²³ | | 83=270-u | | 9x+-7=50 | | (a+3)⁄7=3 | | -9x-13=-39 | | 2x-13=-6 | | 16-4n|=10 | | Y=7-15x | | 3x-8+10=20 | | 7x=+1=4x=-3 | | 7x=+14x=-3 | | 3(p+12)=10(p-9) | | x+3(1-x)-4=-4(x-1)-(2x-95) |