If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x+-3/4+5/6x=-2
We move all terms to the left:
1/3x+-3/4+5/6x-(-2)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x!=0We add all the numbers together, and all the variables
x!=0/6
x!=0
x∈R
1/3x+5/6x+2-3/4=0
We calculate fractions
(-324x^2)/288x^2+96x/288x^2+240x/288x^2+2=0
We multiply all the terms by the denominator
(-324x^2)+96x+240x+2*288x^2=0
We add all the numbers together, and all the variables
(-324x^2)+336x+2*288x^2=0
Wy multiply elements
(-324x^2)+576x^2+336x=0
We get rid of parentheses
-324x^2+576x^2+336x=0
We add all the numbers together, and all the variables
252x^2+336x=0
a = 252; b = 336; c = 0;
Δ = b2-4ac
Δ = 3362-4·252·0
Δ = 112896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{112896}=336$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(336)-336}{2*252}=\frac{-672}{504} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(336)+336}{2*252}=\frac{0}{504} =0 $
| X+50)^2x=21 | | (a+5)/3=3 | | 0.08(2.50n)+3=13.8 | | -x/9-5=-2 | | 2x^2+10x-42=0 | | 75-3.75(30-x)=2.25x | | 7.4x0.26= | | m=5/3;(9,8) | | 2x+4-3/3x=1/3(x+5) | | -(a-1)/4=-9 | | 7x-2+3x=180 | | 50x^2-x-950=0 | | (b-9)/2=-6 | | 3(4x+1)=2(3x+1) | | x³=1,125.10²³ | | x²=1,125.10²³ | | 83=270-u | | 9x+-7=50 | | (a+3)⁄7=3 | | -9x-13=-39 | | 2x-13=-6 | | 16-4n|=10 | | Y=7-15x | | 3x-8+10=20 | | 7x=+1=4x=-3 | | 7x=+14x=-3 | | 3(p+12)=10(p-9) | | x+3(1-x)-4=-4(x-1)-(2x-95) | | –6f=–5f+6 | | 16x-2=3x+7 | | 4j+2(j+1.5)*6=16 | | (7r+6)+(8r-8)=90 |