If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23X^2+3X-2=0
a = 23; b = 3; c = -2;
Δ = b2-4ac
Δ = 32-4·23·(-2)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{193}}{2*23}=\frac{-3-\sqrt{193}}{46} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{193}}{2*23}=\frac{-3+\sqrt{193}}{46} $
| (2/3)+(3m/5)=(31/15) | | 27=3c−3(6−2c) | | 2x+1.50+0.15(2x+1.50)=11.50 | | r-7+3r+7=4(4r+2)-8(1-7r | | 13x-10=120 | | -2(1.2x-4.5)=x+8 | | 2x+1.50+0.15)2x+1.50)=11.50 | | 2(x-2)(x+1)^2-3(x-2)^2(x+1)=0 | | 9•x=-63 | | 1+5m-7m=-3m+5 | | -5+7a=1+5a | | 2(4a+45)=31a-2 | | 6-5x=30-x | | 3(3x-6)=3(x-2) | | 4(c+6)=1+3c | | (x-5)^2=4 | | -5+5v=4v-7 | | 5t=39 | | 35*x=90 | | 3(g-7)=2(10=g+ | | 8(x/5+7)+2x/4=1 | | 7/5+5m/3=61/15 | | x2+2x=-1 | | 14v+5-5=4(v+5) | | 4(1+4b)-6=-82 | | 15.4+19.2j=6.8j-5.83+11.3j | | 3(g-7)=2(10=g) | | (23)5(x-2)+x=6(x+3)-4x | | (3×n)+4=32÷2 | | 7/10+3/1t=4 | | 15.6+s=52.1 | | 16+17n=-5n-(-7-4n) |