If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23/5d-3/8d=47/10
We move all terms to the left:
23/5d-3/8d-(47/10)=0
Domain of the equation: 5d!=0
d!=0/5
d!=0
d∈R
Domain of the equation: 8d!=0We add all the numbers together, and all the variables
d!=0/8
d!=0
d∈R
23/5d-3/8d-(+47/10)=0
We get rid of parentheses
23/5d-3/8d-47/10=0
We calculate fractions
(-15040d^2)/400d^2+1840d/400d^2+(-150d)/400d^2=0
We multiply all the terms by the denominator
(-15040d^2)+1840d+(-150d)=0
We get rid of parentheses
-15040d^2+1840d-150d=0
We add all the numbers together, and all the variables
-15040d^2+1690d=0
a = -15040; b = 1690; c = 0;
Δ = b2-4ac
Δ = 16902-4·(-15040)·0
Δ = 2856100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2856100}=1690$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1690)-1690}{2*-15040}=\frac{-3380}{-30080} =169/1504 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1690)+1690}{2*-15040}=\frac{0}{-30080} =0 $
| 2x-1.75x=0.25 | | 1-z/3=-1 | | (3a+12)+(a+40)=180 | | 3y+5y+10y-4y=0 | | Y=19=13=52q | | 3|x=5|x-2 | | -5-z/3=-7 | | a=1/23^8 | | (x)/(x+2)-3=(1)/(x+2) | | 2b-17=31 | | X=140=26=x5 | | 3+3q=-9 | | 6-4v=-10 | | 19-3x*11-2x*3-5x=0 | | 19-3x*11-2x*3-5x=1 | | 5-f=4 | | (2-5i)(3+i)=0 | | 3y/2y-5-y/y+3-6+12y/2y^2+y-15=0 | | (2x-1)/x-5=(3x-2)/5-x | | (n+3)^2=n^2 | | (2x-1)/x-5+3=(3x-2)/5-x | | 180=x+20+2x-30+40 | | x+23=113 | | 9x+2=75 | | g^2+2g-15=49 | | 5+x=2*4 | | 2(x-8)-4x=2 | | 10d=-9d-3 | | 2x-x=8+x | | 5k-10=189+11 | | N=78=n6=13 | | 12+5x=4x+15 |