23-c(2c+3)=2(c+5)+c

Simple and best practice solution for 23-c(2c+3)=2(c+5)+c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 23-c(2c+3)=2(c+5)+c equation:



23-c(2c+3)=2(c+5)+c
We move all terms to the left:
23-c(2c+3)-(2(c+5)+c)=0
We multiply parentheses
-2c^2-3c-(2(c+5)+c)+23=0
We calculate terms in parentheses: -(2(c+5)+c), so:
2(c+5)+c
We add all the numbers together, and all the variables
c+2(c+5)
We multiply parentheses
c+2c+10
We add all the numbers together, and all the variables
3c+10
Back to the equation:
-(3c+10)
We get rid of parentheses
-2c^2-3c-3c-10+23=0
We add all the numbers together, and all the variables
-2c^2-6c+13=0
a = -2; b = -6; c = +13;
Δ = b2-4ac
Δ = -62-4·(-2)·13
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{35}}{2*-2}=\frac{6-2\sqrt{35}}{-4} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{35}}{2*-2}=\frac{6+2\sqrt{35}}{-4} $

See similar equations:

| -8(-4+4n)=8(n+6) | | 4v-8-3v=2v-12 | | -6x+14+4=32 | | 3x^2+17x+4=9x | | 90=(7x-19)+(x+5) | | 90=(7x-19)(x+5) | | (3x+20)=(-2x+55) | | −(x−2)=2(3x−6) | | 5=2•2.14•r | | -10(3+4n)=50 | | 9a+10(6a-1)=128 | | 3n+5=20n=35 | | −1/3u−1/8=−3/4u+5/8 | | 12x+14=9x+2+42 | | x^29/49=x | | 4p-5p+7-2=4p-6 | | x^29/49=27 | | -6x+27+8x=51 | | 4x2+3x=7x+3 | | 7x-5x=2x | | 6+2x+10=-4 | | 20x0.12x=80 | | -2(y+6)-6y=(y+3) | | 64m2=121 | | -3m=-57m= | | x2-31/44x+5/44=0 | | -x/51/5=2 | | 7=3n-8 | | -16=5-p | | X2-1/x3=14 | | 7x+5+60=14x-5 | | 6=5x/2x-3 |

Equations solver categories