90=(7x-19)(x+5)

Simple and best practice solution for 90=(7x-19)(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 90=(7x-19)(x+5) equation:



90=(7x-19)(x+5)
We move all terms to the left:
90-((7x-19)(x+5))=0
We multiply parentheses ..
-((+7x^2+35x-19x-95))+90=0
We calculate terms in parentheses: -((+7x^2+35x-19x-95)), so:
(+7x^2+35x-19x-95)
We get rid of parentheses
7x^2+35x-19x-95
We add all the numbers together, and all the variables
7x^2+16x-95
Back to the equation:
-(7x^2+16x-95)
We get rid of parentheses
-7x^2-16x+95+90=0
We add all the numbers together, and all the variables
-7x^2-16x+185=0
a = -7; b = -16; c = +185;
Δ = b2-4ac
Δ = -162-4·(-7)·185
Δ = 5436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5436}=\sqrt{36*151}=\sqrt{36}*\sqrt{151}=6\sqrt{151}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-6\sqrt{151}}{2*-7}=\frac{16-6\sqrt{151}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+6\sqrt{151}}{2*-7}=\frac{16+6\sqrt{151}}{-14} $

See similar equations:

| (3x+20)=(-2x+55) | | −(x−2)=2(3x−6) | | 5=2•2.14•r | | -10(3+4n)=50 | | 9a+10(6a-1)=128 | | 3n+5=20n=35 | | −1/3u−1/8=−3/4u+5/8 | | 12x+14=9x+2+42 | | x^29/49=x | | 4p-5p+7-2=4p-6 | | x^29/49=27 | | -6x+27+8x=51 | | 4x2+3x=7x+3 | | 7x-5x=2x | | 6+2x+10=-4 | | 20x0.12x=80 | | -2(y+6)-6y=(y+3) | | 64m2=121 | | -3m=-57m= | | x2-31/44x+5/44=0 | | -x/51/5=2 | | 7=3n-8 | | -16=5-p | | X2-1/x3=14 | | 7x+5+60=14x-5 | | 6=5x/2x-3 | | 1=3x-35 | | y-14=-54 | | 3=-7+2x | | 14x-5=7x+5+60 | | -6=x7+9-x | | R(r1+r2)=r1*r2 |

Equations solver categories