2/5x+1/20=3/4x

Simple and best practice solution for 2/5x+1/20=3/4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+1/20=3/4x equation:



2/5x+1/20=3/4x
We move all terms to the left:
2/5x+1/20-(3/4x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2/5x-(+3/4x)+1/20=0
We get rid of parentheses
2/5x-3/4x+1/20=0
We calculate fractions
80x^2/800x^2+320x/800x^2+(-600x)/800x^2=0
We multiply all the terms by the denominator
80x^2+320x+(-600x)=0
We get rid of parentheses
80x^2+320x-600x=0
We add all the numbers together, and all the variables
80x^2-280x=0
a = 80; b = -280; c = 0;
Δ = b2-4ac
Δ = -2802-4·80·0
Δ = 78400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{78400}=280$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-280)-280}{2*80}=\frac{0}{160} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-280)+280}{2*80}=\frac{560}{160} =3+1/2 $

See similar equations:

| t÷4-7=11 | | 6x+25–4x+25=–2 | | 8=40u | | 7(t-6)+5=6(2t+2)-8 | | 7.23=2(3.14)(r) | | s*5-41=54 | | a÷5+8=12 | | X²-9x-36=0 | | w-2.32=7.77 | | x+x+0.10+x+0.10+1.11=11.06 | | 2g-2/3=5/6 | | 4.2=2n-3 | | (12-x)/3=9x-2 | | 0=-0.01x^2-10x+1989 | | 6x+4=4(x+3 | | 13(t-3)+8t=7(3t+2)-8 | | 5x-17=103 | | (5*x)/6=(3*x)/7 | | 1.6x-4.3=2.42 | | (2(x+5))/(5-x)=6 | | 4+3(t-3)=15 | | 3+4(t-3)=15 | | 4x+4=2x+ | | M2=(x+1) | | M1=(3x-17) | | (V-8)(v-1)=0 | | 2*n+3=113 | | 3x2+15=0 | | w+w+w+4w-10=180 | | W+w+4w-10=180 | | 6w-10=180 | | 4x+1=5x=9 |

Equations solver categories