180=(x+15+)(3x+10)+x

Simple and best practice solution for 180=(x+15+)(3x+10)+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(x+15+)(3x+10)+x equation:



180=(x+15+)(3x+10)+x
We move all terms to the left:
180-((x+15+)(3x+10)+x)=0
We add all the numbers together, and all the variables
-((+x)(3x+10)+x)+180=0
We multiply parentheses ..
-((+3x^2+10x)+x)+180=0
We calculate terms in parentheses: -((+3x^2+10x)+x), so:
(+3x^2+10x)+x
We get rid of parentheses
3x^2+10x+x
We add all the numbers together, and all the variables
3x^2+11x
Back to the equation:
-(3x^2+11x)
We get rid of parentheses
-3x^2-11x+180=0
a = -3; b = -11; c = +180;
Δ = b2-4ac
Δ = -112-4·(-3)·180
Δ = 2281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{2281}}{2*-3}=\frac{11-\sqrt{2281}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{2281}}{2*-3}=\frac{11+\sqrt{2281}}{-6} $

See similar equations:

| 180=(x+15)(3x+10)x | | 35r2+3r-2=0 | | 5x+150+3x+6=180 | | 34+0.50x=20+0.75 | | b2-12b+29=-3 | | 3.5a+6=18-2.5a | | x-2.26=9.1 | | -0.5y+20-0.5y=12 | | 18+b+41=9b+3 | | 7x5=35 | | .50=x/2.5*100 | | 3-4y=y+18 | | 38=19-x | | ((7)/(5x))+((3)/(x))=((4)/(x-4)) | | G=2p-17 | | 2f^2-50=0 | | P(a)=0.54 | | 5x-8=98 | | 93x7=651 | | -3p+-12=0 | | n/3+-14=-17 | | 6y+4=9y+10 | | 17a+5=19a-1 | | 19z=z+18 | | 3b=4b-20 | | c=2c-19 | | 4u=6u-30 | | 3x-12x=211 | | 18n40=22n | | 3v=4v-19 | | 7(x+5)=3x-6 | | 7(x-2)-5=3(x-1) |

Equations solver categories