If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2-12b+29=-3
We move all terms to the left:
b2-12b+29-(-3)=0
We add all the numbers together, and all the variables
b^2-12b+32=0
a = 1; b = -12; c = +32;
Δ = b2-4ac
Δ = -122-4·1·32
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4}{2*1}=\frac{8}{2} =4 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4}{2*1}=\frac{16}{2} =8 $
| 3.5a+6=18-2.5a | | x-2.26=9.1 | | -0.5y+20-0.5y=12 | | 18+b+41=9b+3 | | 7x5=35 | | .50=x/2.5*100 | | 3-4y=y+18 | | 38=19-x | | ((7)/(5x))+((3)/(x))=((4)/(x-4)) | | G=2p-17 | | 2f^2-50=0 | | P(a)=0.54 | | 5x-8=98 | | 93x7=651 | | -3p+-12=0 | | n/3+-14=-17 | | 6y+4=9y+10 | | 17a+5=19a-1 | | 19z=z+18 | | 3b=4b-20 | | c=2c-19 | | 4u=6u-30 | | 3x-12x=211 | | 18n40=22n | | 3v=4v-19 | | 7(x+5)=3x-6 | | 7(x-2)-5=3(x-1) | | C=17x+3 | | (12x+19)+(8x+11)=180 | | 12-6x=18-4x | | 180-x=168 | | 262=6x+17 |