17/24+1/6a=1/4a

Simple and best practice solution for 17/24+1/6a=1/4a equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17/24+1/6a=1/4a equation:



17/24+1/6a=1/4a
We move all terms to the left:
17/24+1/6a-(1/4a)=0
Domain of the equation: 6a!=0
a!=0/6
a!=0
a∈R
Domain of the equation: 4a)!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
1/6a-(+1/4a)+17/24=0
We get rid of parentheses
1/6a-1/4a+17/24=0
We calculate fractions
1632a^2/1152a^2+192a/1152a^2+(-288a)/1152a^2=0
We multiply all the terms by the denominator
1632a^2+192a+(-288a)=0
We get rid of parentheses
1632a^2+192a-288a=0
We add all the numbers together, and all the variables
1632a^2-96a=0
a = 1632; b = -96; c = 0;
Δ = b2-4ac
Δ = -962-4·1632·0
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9216}=96$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-96}{2*1632}=\frac{0}{3264} =0 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+96}{2*1632}=\frac{192}{3264} =1/17 $

See similar equations:

| 3.3x+26.4-x=1.2 | | 1/3x+6=2/3x+12 | | 4(x+7)=6x-(2-x) | | 5x-1(x+3)=7+2(x+2) | | 750*6r=862.50 | | x/3=130 | | 2s+7=s | | 6z+5=12+5z-5 | | 7m/14=1 | | x(6+x)-2(x+1)-5x=4-2,0 | | 8x-2(x-6)=6(x+1)+7 | | 7(2x+3)+6=-7+10x+14 | | 0=-4.9t^2+t+109.2 | | −3/8y=−24 | | -8a=2a | | 100=(2x)+(3x-10) | | 2(a+5)-3=5-3(a+1) | | 5x-9=3x+12+2+2x | | 2x-4=85x | | -7n+4=3n+4 | | -7a+9=3a+49 | | −38y=−24 | | -20a+-8a+a—19a=8 | | 5+0.50b=11.50 | | -6(-2w+6)-3w=5(w-6)-4 | | 3x-10+x+10+2x=180 | | .4x-11=9 | | 5(w+6)=8w | | 9(2x+1)=18x+9 | | 14+13=-7x+54 | | 19/16+38x=13/4 | | –8+–2c=4 |

Equations solver categories