16=2(t-1)t

Simple and best practice solution for 16=2(t-1)t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16=2(t-1)t equation:



16=2(t-1)t
We move all terms to the left:
16-(2(t-1)t)=0
We calculate terms in parentheses: -(2(t-1)t), so:
2(t-1)t
We multiply parentheses
2t^2-2t
Back to the equation:
-(2t^2-2t)
We get rid of parentheses
-2t^2+2t+16=0
a = -2; b = 2; c = +16;
Δ = b2-4ac
Δ = 22-4·(-2)·16
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{33}}{2*-2}=\frac{-2-2\sqrt{33}}{-4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{33}}{2*-2}=\frac{-2+2\sqrt{33}}{-4} $

See similar equations:

| 11x-4x+120=11x+52 | | 5w-7=3w-5 | | 4.3v–6=8+2.3v | | 4x=4x+1-2x | | 3c-4=2c+3 | | 5(2y–7)–15y=–10 | | 300+6x=900-6x | | 16x+4x+4=8x-4 | | 5s+20=6s | | 16=2(t-1)+ | | 3(4y+1)-11=6(6y+5)+8 | | 2x-1=3+-2 | | 4x+8x=-4x | | -4y=-22-7 | | 3x+15=-4x-6 | | 15-8n=19 | | 2k+30=-6 | | C=6(y-8) | | 100^x=43 | | 10x=14x-13 | | 4x+4x=-4x | | (2(z-8)/12)=3/2 | | -4+9g=-4g+9 | | -3x+17=2(-4x+1)+5x | | X/7+x/8=5 | | –7−3k=–4k | | 2/5+5/15r=8/15r-3/5 | | 15=x/2-5 | | 5.7x-8.8=25.4 | | -25.5=-4.5(6h-7) | | 8x+6(x+5)=180 | | 1/2(4z+8)=-36 |

Equations solver categories