15x+30x(400-x)=7200

Simple and best practice solution for 15x+30x(400-x)=7200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15x+30x(400-x)=7200 equation:



15x+30x(400-x)=7200
We move all terms to the left:
15x+30x(400-x)-(7200)=0
We add all the numbers together, and all the variables
15x+30x(-1x+400)-7200=0
We multiply parentheses
-30x^2+15x+12000x-7200=0
We add all the numbers together, and all the variables
-30x^2+12015x-7200=0
a = -30; b = 12015; c = -7200;
Δ = b2-4ac
Δ = 120152-4·(-30)·(-7200)
Δ = 143496225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{143496225}=\sqrt{225*637761}=\sqrt{225}*\sqrt{637761}=15\sqrt{637761}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12015)-15\sqrt{637761}}{2*-30}=\frac{-12015-15\sqrt{637761}}{-60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12015)+15\sqrt{637761}}{2*-30}=\frac{-12015+15\sqrt{637761}}{-60} $

See similar equations:

| 5/x+3/2x=13 | | 1/4x-6=1/2x+9 | | 11x-17=4x+9 | | 0.25x-6=0.5x+9 | | 3^x+2=729 | | (2x-6)/12=5 | | 5x-2=4x+18 | | X-(3x+5)=12-(x+2) | | 48/(2x+10)=6 | | n2-4=0 | | 12=5x+2x^2 | | 8(5t+4)=4(3t+7) | | 11X+13y=1000 | | -4.5=9p | | 31–x=8 | | 5x+8-2x-15x=-2 | | 2^2x+1=5^3x | | 5x+8-2x-15=-7 | | 5x+8-2x-15=-2 | | 4(3-2x)=7x-5 | | -2y+14-9y=+5 | | x=-25x+8-2x-15 | | X2-2x=2.5 | | X2-x=2.5 | | u=3+14 | | 3x+18^2=0 | | t=2+19 | | 1/3x+8=6-4/3 | | 6(3x-4)=2(4x-12 | | 3x/7+1=x/2-5 | | 5y2=30 | | 5^2+2x=25 |

Equations solver categories