If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2=30
We move all terms to the left:
5y^2-(30)=0
a = 5; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·5·(-30)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{6}}{2*5}=\frac{0-10\sqrt{6}}{10} =-\frac{10\sqrt{6}}{10} =-\sqrt{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{6}}{2*5}=\frac{0+10\sqrt{6}}{10} =\frac{10\sqrt{6}}{10} =\sqrt{6} $
| 5^2+2x=25 | | 4(x+2)-2(x-3=24 | | 0.50×x^2-10x=700 | | k=8*4 | | 1/3×-4=5/6x | | Y-0.8y=555 | | 3(x-4)=2(x+16) | | y=2*7 | | c=7+8 | | j=7+9 | | j=7 | | 0.97^x=0.2 | | b=9+1 | | u=10-7 | | 2x+191=180 | | j=4-1 | | 7,20=6x-x*x | | x^2+17x-12=8x-2 | | 2(5x+3)-1=65 | | x^2-5x+7=-9x+4 | | -29=3(x-3)+10 | | 13x-2=5x-26 | | 3x-11=4(x-5) | | (x+1)-(x-1)=36x-x | | 6x+7/3x+2=x/2+3/4/2x+3 | | x^2-16x+11=-8x-4 | | 3x+5/x-3=10 | | x3-7x+6.5=0 | | x^-2x-1=0 | | 40+.1y=70 | | x2-4x+4=9 | | 6+4y=5y |