1/4x+2=-5.8x-5

Simple and best practice solution for 1/4x+2=-5.8x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x+2=-5.8x-5 equation:



1/4x+2=-5.8x-5
We move all terms to the left:
1/4x+2-(-5.8x-5)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We get rid of parentheses
1/4x+5.8x+5+2=0
We multiply all the terms by the denominator
(5.8x)*4x+5*4x+2*4x+1=0
We add all the numbers together, and all the variables
(+5.8x)*4x+5*4x+2*4x+1=0
We multiply parentheses
20x^2+5*4x+2*4x+1=0
Wy multiply elements
20x^2+20x+8x+1=0
We add all the numbers together, and all the variables
20x^2+28x+1=0
a = 20; b = 28; c = +1;
Δ = b2-4ac
Δ = 282-4·20·1
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-8\sqrt{11}}{2*20}=\frac{-28-8\sqrt{11}}{40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+8\sqrt{11}}{2*20}=\frac{-28+8\sqrt{11}}{40} $

See similar equations:

| 4x^2=4000 | | a+7-11=-1 | | 6x+14=-27+17 | | 5(4f-3)+1=6 | | E=2L+3c | | 28x-7+24+18=180 | | 32=5x-3x | | 3-2=5d-1/2 | | -5(2x-6=-x+4+4x | | 19=9x+4-4 | | 10-4(3-2y)=23-(2y-1) | | x+(3x)+(1.5x)+(180x)=455 | | -5(v+7)+7v=15 | | -3(2x+1)=4x+5 | | 2(x+6x)=130 | | –7+–2b=–15 | | 16.50x-3=18x-5 | | -x/8=128 | | -2x7=29 | | -2/3x+3=21 | | x+(3x)+(1.5)+(180x)=455 | | 7(r-2)-9(r-1)=3(5-r)+(r+8) | | -(2x–11)=7 | | w/3-9=-8 | | 22-2y=-32 | | 14+7.5n=9+7.7n | | x-3=-64 | | 67=r+25 | | 2s+s+7+8=180 | | 5x-25=-7 | | 3(2x–6)=4x+8 | | 9(10)^x=72 |

Equations solver categories