If it's not what You are looking for type in the equation solver your own equation and let us solve it.
/-16t^2+48t+64=0
We add all the numbers together, and all the variables
-16t^2+48t+65=0
a = -16; b = 48; c = +65;
Δ = b2-4ac
Δ = 482-4·(-16)·65
Δ = 6464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6464}=\sqrt{64*101}=\sqrt{64}*\sqrt{101}=8\sqrt{101}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-8\sqrt{101}}{2*-16}=\frac{-48-8\sqrt{101}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+8\sqrt{101}}{2*-16}=\frac{-48+8\sqrt{101}}{-32} $
| xx3=x+15 | | 35x=275 | | 101=(x)+(2x)+(2x+6) | | X=5;3(x+2)= | | 101=x+2x+(2x+6) | | (x)=(x+1)^(2)-3 | | X/3-5=X/4-2x | | 4/x=11/10 | | x/4=10/11 | | 8x*7=31 | | 4x=11/10 | | 4.5v-9-3=27.5 | | (m)/(5)+5=(m)/(2)+7 | | 6y+2(7y+3)=106 | | R(x)=x(70-5x)C(x)=160+10x | | 0=t^2+12-4t | | x^2-13x+90=0 | | n/7=3/13 | | X=5Y-7z+8 | | 6x+11=10x-5 | | 4n+5=6n-11 | | 3(–3x+11)–x=3 | | 0.5z=4.5 | | 3(x+5)=12-12(x-4) | | 2.1y+3.2-y=2.1 | | -5x=30÷5 | | (8x+4)+(6x+8)=180 | | 3x+11=51-× | | 25-n=8 | | 4x-15=×+12 | | 5x-8=136-7x | | −3(e−2)=9 |