If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x2+18x-37=0
We add all the numbers together, and all the variables
-1x^2+18x-37=0
a = -1; b = 18; c = -37;
Δ = b2-4ac
Δ = 182-4·(-1)·(-37)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4\sqrt{11}}{2*-1}=\frac{-18-4\sqrt{11}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4\sqrt{11}}{2*-1}=\frac{-18+4\sqrt{11}}{-2} $
| 3q+4q−q−2q=16 | | -2+3k=4k+2 | | 5=q+10/6 | | 5=q+106 | | 8(2k-14)=2k | | 7(5+2b)+b=65 | | -6=3(4x+1) | | (19x-18)+(10x-9)=180 | | 11/9*141.4w+86.1w=1009 | | -10x-4=6 | | 4x^2-4x=20.08 | | M=12+7-(4x-3)+(2x-21( | | 3z2-142=0 | | 6x12x=14 | | (19x-18)+(7x+1)=180 | | –3(x–5)=2 | | 6-2x=4-9 | | 8x+02=11x-31 | | 2x+16+4x=6x+12-4 | | 6x12=14+x | | 3(2x-1)-2(5x)=3 | | a^2+8a=33 | | 7+8=x2+x2 | | -6x+18+5=1 | | X2-22x-325=180 | | 3w-10-w-5=5w+3-4w | | x-9+6x=30 | | -8(3x-1/4)=2(9-7x | | 13x+5+2x=11x+85 | | -5u+42=3(u+6) | | 2y=2/3+1 | | 9x–4=5x–4+4x |