If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-142=0
a = 3; b = 0; c = -142;
Δ = b2-4ac
Δ = 02-4·3·(-142)
Δ = 1704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1704}=\sqrt{4*426}=\sqrt{4}*\sqrt{426}=2\sqrt{426}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{426}}{2*3}=\frac{0-2\sqrt{426}}{6} =-\frac{2\sqrt{426}}{6} =-\frac{\sqrt{426}}{3} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{426}}{2*3}=\frac{0+2\sqrt{426}}{6} =\frac{2\sqrt{426}}{6} =\frac{\sqrt{426}}{3} $
| 6x12x=14 | | (19x-18)+(7x+1)=180 | | –3(x–5)=2 | | 6-2x=4-9 | | 8x+02=11x-31 | | 2x+16+4x=6x+12-4 | | 6x12=14+x | | 3(2x-1)-2(5x)=3 | | a^2+8a=33 | | 7+8=x2+x2 | | -6x+18+5=1 | | X2-22x-325=180 | | 3w-10-w-5=5w+3-4w | | x-9+6x=30 | | -8(3x-1/4)=2(9-7x | | 13x+5+2x=11x+85 | | -5u+42=3(u+6) | | 2y=2/3+1 | | 9x–4=5x–4+4x | | 7(x-5)=42 | | 3(2x+5)=10x+6-4x+9 | | 0.5x=11.23 | | 35=-100+9x | | 91-y+y=91 | | -7-2x=7(x+8 | | 3(x+2)=3x–6 | | 5x+4+7x=-2 | | 13g-47=96 | | 2(-9+4x)=53 | | y=77+(3*17) | | -2(u+8)=-6u-32 | | d+3=8. |