If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x^2-38x-13=0
a = -7; b = -38; c = -13;
Δ = b2-4ac
Δ = -382-4·(-7)·(-13)
Δ = 1080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1080}=\sqrt{36*30}=\sqrt{36}*\sqrt{30}=6\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-6\sqrt{30}}{2*-7}=\frac{38-6\sqrt{30}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+6\sqrt{30}}{2*-7}=\frac{38+6\sqrt{30}}{-14} $
| 4(x-3)=2(1-x)+10x | | 185=5n+5(7+4n | | 20+8(x-11=-13 | | -2(x+1)-3x=55 | | -4(z-1)(-z-2)=0 | | 3x(X-2)+6=X-106 | | 4(d-7)+3(5d-3)=1 | | Z=x-105/9 | | 2(2x+5)+63+90=180 | | 2/x+10=8/x | | 2-2r=12 | | 2x-3(x-5)=5x | | -16-x=14 | | 2x+10=190 | | 5=1-m/9 | | 2x+6x+4x+8x=360 | | 3x-6+5x+1-2x+2=21 | | 3(x+1)-(4x+2)=(6x+3)-4(3x-7) | | 2(3p-6)=4p | | (x-1)+(3x+5)=180 | | (7x-5)+(15x+3)=180 | | )7x-5)+(15x+3)=180 | | (15x+3)+(7x-5)=180 | | 22+9x=10x+16 | | 5a-2=-32 | | (27^x)=6561 | | (2x+1)^2+3-3=2(x^2+3)+1 | | 2587.50=84.24x-(8222.50-35x) | | 30+.125x.25x=x | | x*0.05-x=8000 | | 0.5n=70 | | 9+15=16+4x |