-6k(k-2)=-6(1+4k)

Simple and best practice solution for -6k(k-2)=-6(1+4k) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6k(k-2)=-6(1+4k) equation:



-6k(k-2)=-6(1+4k)
We move all terms to the left:
-6k(k-2)-(-6(1+4k))=0
We add all the numbers together, and all the variables
-6k(k-2)-(-6(4k+1))=0
We multiply parentheses
-6k^2+12k-(-6(4k+1))=0
We calculate terms in parentheses: -(-6(4k+1)), so:
-6(4k+1)
We multiply parentheses
-24k-6
Back to the equation:
-(-24k-6)
We get rid of parentheses
-6k^2+12k+24k+6=0
We add all the numbers together, and all the variables
-6k^2+36k+6=0
a = -6; b = 36; c = +6;
Δ = b2-4ac
Δ = 362-4·(-6)·6
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12\sqrt{10}}{2*-6}=\frac{-36-12\sqrt{10}}{-12} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12\sqrt{10}}{2*-6}=\frac{-36+12\sqrt{10}}{-12} $

See similar equations:

| 2n=45-15 | | 2x+5+55=200 | | X+20+2x+10=90° | | -5=-(k+9) | | 9m-2=10+6m | | 3(3y+3)-y=1 | | (4x+4)-(7x-8)/4x+5=4/3 | | h+25=52 | | 10x2+2=722 | | C=5/9x(9-32) | | (u+5)7=63 | | (x2+5x+4)–(2x2–3x+6)=…………… | | 30-8n=6(7-2n) | | 4x2+4x+1=15 | | 2x+21=10x-5-2x+8 | | (q-9)3=12 | | –10+3m=8m | | 5t+7t=3 | | 5x+4+2x-2=23 | | 2(x+4(=4x+3-2x+5 | | 8=1/3(x+6) | | 50+65h=​ | | n=8+1/1.75 | | 5(x-6)^2=45 | | 2.8n+7=31 | | 4+4xx3=72 | | |2x+7|=23 | | –7(p+9)=7 | | 4(x+1)=-7(x-2)+12 | | -4y+14=55 | | 5(x-6)2=45 | | 6h+4=–2 |

Equations solver categories