If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x+4)-(7x-8)/4x+5=4/3
We move all terms to the left:
(4x+4)-(7x-8)/4x+5-(4/3)=0
Domain of the equation: 4x!=0We add all the numbers together, and all the variables
x!=0/4
x!=0
x∈R
(4x+4)-(7x-8)/4x+5-(+4/3)=0
We get rid of parentheses
4x-(7x-8)/4x+4+5-4/3=0
We calculate fractions
4x+(-21x+24)/12x+(-16x)/12x+4+5=0
We add all the numbers together, and all the variables
4x+(-21x+24)/12x+(-16x)/12x+9=0
We multiply all the terms by the denominator
4x*12x+(-21x+24)+(-16x)+9*12x=0
Wy multiply elements
48x^2+(-21x+24)+(-16x)+108x=0
We get rid of parentheses
48x^2-21x-16x+108x+24=0
We add all the numbers together, and all the variables
48x^2+71x+24=0
a = 48; b = 71; c = +24;
Δ = b2-4ac
Δ = 712-4·48·24
Δ = 433
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(71)-\sqrt{433}}{2*48}=\frac{-71-\sqrt{433}}{96} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(71)+\sqrt{433}}{2*48}=\frac{-71+\sqrt{433}}{96} $