(4x+4)-(7x-8)/4x+5=4/3

Simple and best practice solution for (4x+4)-(7x-8)/4x+5=4/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+4)-(7x-8)/4x+5=4/3 equation:



(4x+4)-(7x-8)/4x+5=4/3
We move all terms to the left:
(4x+4)-(7x-8)/4x+5-(4/3)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
(4x+4)-(7x-8)/4x+5-(+4/3)=0
We get rid of parentheses
4x-(7x-8)/4x+4+5-4/3=0
We calculate fractions
4x+(-21x+24)/12x+(-16x)/12x+4+5=0
We add all the numbers together, and all the variables
4x+(-21x+24)/12x+(-16x)/12x+9=0
We multiply all the terms by the denominator
4x*12x+(-21x+24)+(-16x)+9*12x=0
Wy multiply elements
48x^2+(-21x+24)+(-16x)+108x=0
We get rid of parentheses
48x^2-21x-16x+108x+24=0
We add all the numbers together, and all the variables
48x^2+71x+24=0
a = 48; b = 71; c = +24;
Δ = b2-4ac
Δ = 712-4·48·24
Δ = 433
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(71)-\sqrt{433}}{2*48}=\frac{-71-\sqrt{433}}{96} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(71)+\sqrt{433}}{2*48}=\frac{-71+\sqrt{433}}{96} $

See similar equations:

| h+25=52 | | 10x2+2=722 | | C=5/9x(9-32) | | (u+5)7=63 | | (x2+5x+4)–(2x2–3x+6)=…………… | | 30-8n=6(7-2n) | | 4x2+4x+1=15 | | 2x+21=10x-5-2x+8 | | (q-9)3=12 | | –10+3m=8m | | 5t+7t=3 | | 5x+4+2x-2=23 | | 2(x+4(=4x+3-2x+5 | | 8=1/3(x+6) | | 50+65h=​ | | n=8+1/1.75 | | 5(x-6)^2=45 | | 2.8n+7=31 | | 4+4xx3=72 | | |2x+7|=23 | | –7(p+9)=7 | | 4(x+1)=-7(x-2)+12 | | -4y+14=55 | | 5(x-6)2=45 | | 6h+4=–2 | | 1x=12-3x | | n^2=54 | | 4(r+3)=-2(2r-1) | | 19+2n=1 | | n^2=554 | | 4x+8=-x+53 | | 4x+11=11x+19 |

Equations solver categories