-4/5w-1/5=2/3w+1

Simple and best practice solution for -4/5w-1/5=2/3w+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4/5w-1/5=2/3w+1 equation:



-4/5w-1/5=2/3w+1
We move all terms to the left:
-4/5w-1/5-(2/3w+1)=0
Domain of the equation: 5w!=0
w!=0/5
w!=0
w∈R
Domain of the equation: 3w+1)!=0
w∈R
We get rid of parentheses
-4/5w-2/3w-1-1/5=0
We calculate fractions
(-12w)/375w^2+(-250w)/375w^2+(-3w)/375w^2-1=0
We multiply all the terms by the denominator
(-12w)+(-250w)+(-3w)-1*375w^2=0
Wy multiply elements
-375w^2+(-12w)+(-250w)+(-3w)=0
We get rid of parentheses
-375w^2-12w-250w-3w=0
We add all the numbers together, and all the variables
-375w^2-265w=0
a = -375; b = -265; c = 0;
Δ = b2-4ac
Δ = -2652-4·(-375)·0
Δ = 70225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{70225}=265$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-265)-265}{2*-375}=\frac{0}{-750} =0 $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-265)+265}{2*-375}=\frac{530}{-750} =-53/75 $

See similar equations:

| -2(-8y+9)-6y=2(y-4)-4 | | -180=3(-8+4x) | | -7(v-7)=-4v+37 | | 9a+20=7a+4a | | -16=3(x+3)-8x | | f(-5)=7-4(-5) | | 0.5(2-x)=9.5+(x+1) | | 4.38=x-0.30x | | 6/5m-6=2/3m+10 | | 9w-126=-45 | | 9-7u=-54 | | 5m+12=m | | 7+u=8 | | 75x+3150=60x+2475 | | 5^2x+1-26+(5^x)+5=0 | | -2/5x-6=1/3x+4/3 | | -3(2v-4)+5v=3(v+2) | | x+70=76+41 | | 2(u-5)=-3u-20 | | 12+7=5x-1+57 | | 34=8v+2(v-8) | | 4/5(20x-10)=3/4(16-23x) | | 16t=12t+2 | | 34=8v+2 | | x+70+76=41 | | (2x+5)+35+x=180 | | x+70=76=41 | | 27=9y-6y | | 52=4(2x=3) | | 1.50+0.15x=39.90 | | 54+s-45+s-13=180 | | 101+3a+a+31=180 |

Equations solver categories