If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/5(20x-10)=3/4(16-23x)
We move all terms to the left:
4/5(20x-10)-(3/4(16-23x))=0
Domain of the equation: 5(20x-10)!=0
x∈R
Domain of the equation: 4(16-23x))!=0We add all the numbers together, and all the variables
x∈R
4/5(20x-10)-(3/4(-23x+16))=0
We calculate fractions
(16x(-)/(5(20x-10)*4(-23x+16)))+(-15x2/(5(20x-10)*4(-23x+16)))=0
We calculate terms in parentheses: +(16x(-)/(5(20x-10)*4(-23x+16))), so:
16x(-)/(5(20x-10)*4(-23x+16))
We add all the numbers together, and all the variables
16x0/(5(20x-10)*4(-23x+16))
We multiply all the terms by the denominator
16x0
We add all the numbers together, and all the variables
16x
Back to the equation:
+(16x)
We calculate terms in parentheses: +(-15x2/(5(20x-10)*4(-23x+16))), so:We get rid of parentheses
-15x2/(5(20x-10)*4(-23x+16))
We multiply all the terms by the denominator
-15x2
We add all the numbers together, and all the variables
-15x^2
Back to the equation:
+(-15x^2)
-15x^2+16x=0
a = -15; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-15)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-15}=\frac{-32}{-30} =1+1/15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-15}=\frac{0}{-30} =0 $
| 16t=12t+2 | | 34=8v+2 | | x+70+76=41 | | (2x+5)+35+x=180 | | x+70=76=41 | | 27=9y-6y | | 52=4(2x=3) | | 1.50+0.15x=39.90 | | 54+s-45+s-13=180 | | 101+3a+a+31=180 | | 4-5x=52 | | 31+2c+c-28=180 | | 4x-20-19=6x-35 | | 2t-6=t+6 | | 68=x^2+4 | | 4x+3x-4=4+7x | | 4x+3x-4=3-7+7x | | 10x-3=5x-8 | | 12m-18-6m=-4m+12 | | 2x+2x=-8 | | W=6c-8 | | 5x+3(2x-8)=12 | | 8x+6x=-6 | | 0=0.55x-2 | | -4u+13u+5=6u+31 | | X/5+2/2x+11/20=5x+1/4 | | 0-1+d=17 | | 8x+2(6x-2)=24+6x | | -2x/9=16 | | 3c-0=5 | | -24+24=-3x | | 9=18x0.5 |