-2/z+1/2z=3/z-6

Simple and best practice solution for -2/z+1/2z=3/z-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/z+1/2z=3/z-6 equation:



-2/z+1/2z=3/z-6
We move all terms to the left:
-2/z+1/2z-(3/z-6)=0
Domain of the equation: z!=0
z∈R
Domain of the equation: 2z!=0
z!=0/2
z!=0
z∈R
Domain of the equation: z-6)!=0
z∈R
We get rid of parentheses
-2/z+1/2z-3/z+6=0
We calculate fractions
(-6z-2)/2z^2+z/2z^2+6=0
We multiply all the terms by the denominator
(-6z-2)+z+6*2z^2=0
We add all the numbers together, and all the variables
z+(-6z-2)+6*2z^2=0
Wy multiply elements
12z^2+z+(-6z-2)=0
We get rid of parentheses
12z^2+z-6z-2=0
We add all the numbers together, and all the variables
12z^2-5z-2=0
a = 12; b = -5; c = -2;
Δ = b2-4ac
Δ = -52-4·12·(-2)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-11}{2*12}=\frac{-6}{24} =-1/4 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+11}{2*12}=\frac{16}{24} =2/3 $

See similar equations:

| (x-2)2=3 | | 1/2x+1/3=2x-1/5 | | a/(-4)=12 | | y•4=32 | | z-0,5=3,6 | | 7.25-3m+2m=6 | | 4^x-16^2x+1=0 | | T=50+n-40/4N=70 | | b+2(-1.25)=6 | | 4x-10=x+3x | | F=1,8c+32(16) | | (-6/7x)+26=-16 | | (-6/7)x+26=-16 | | -2/7=x+3/4 | | 10(x=2)-4x=3(2x+1)-12 | | 4(v-3)-6v=-2(v+6 | | 6x+45=-3x+15 | | 5/8x+7=x-11 | | 10(x+2)-4x=3(x+1)-12 | | 2x-15=10+2x | | 10x+40=13x-20 | | 3^2y+3^Y-2=0 | | 2.4(x-5.2)=10 | | 5(21-7y)=7y | | 2(3x+4=8x+2 | | (-1/6)(x-18)+(1/3)(x+3)=x-6 | | (-1/6)(x-18)+(1/8)(x+3)=x-6 | | (1/6)(x-18)+(1/8)(x+3)=x-6 | | 3x-(2+X)=16 | | 29+2x-7=11x-14-3x | | 29-2x-7=11x-14-3x | | 0=3w^2+5w-2 |

Equations solver categories