-10(r+12)-4=-10(r+11)r

Simple and best practice solution for -10(r+12)-4=-10(r+11)r equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -10(r+12)-4=-10(r+11)r equation:



-10(r+12)-4=-10(r+11)r
We move all terms to the left:
-10(r+12)-4-(-10(r+11)r)=0
We multiply parentheses
-10r-(-10(r+11)r)-120-4=0
We calculate terms in parentheses: -(-10(r+11)r), so:
-10(r+11)r
We multiply parentheses
-10r^2-110r
Back to the equation:
-(-10r^2-110r)
We add all the numbers together, and all the variables
-(-10r^2-110r)-10r-124=0
We get rid of parentheses
10r^2+110r-10r-124=0
We add all the numbers together, and all the variables
10r^2+100r-124=0
a = 10; b = 100; c = -124;
Δ = b2-4ac
Δ = 1002-4·10·(-124)
Δ = 14960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14960}=\sqrt{16*935}=\sqrt{16}*\sqrt{935}=4\sqrt{935}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-4\sqrt{935}}{2*10}=\frac{-100-4\sqrt{935}}{20} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+4\sqrt{935}}{2*10}=\frac{-100+4\sqrt{935}}{20} $

See similar equations:

| 20x-(6x-5)=75 | | 3p-4÷-2=14 | | 74=53−7x | | 7(x-9)=98 | | (5x+2)=(3(x+14)) | | 8=18+(3/8)(16-40x) | | 26x35= | | 48=2w+12 | | 5x+22-(5x+12)=x+1 | | 2x-6/3-1=3 | | 2-(x-6)=18 | | 4(v-5)-3=-7(-3v+5)-9v | | 4x(2)+6x-3=0 | | -5x–6=1 | | 3x+47+6x-25=270 | | 2x+5-4x=10x+9+3 | | -(-4-12x)-10=6(x-5) | | 2(-4m-5)=16 | | -2(2x+3=-4(1x+1)-2 | | 4(x-2)=13-3x | | 8x+-3=1x+2 | | 3(-7)=-21+3x | | 0.1x=0.2(x2) | | 2(x-3)-3(x+2)=14 | | 1/3(9x+3x)=3x+1 | | 50=8+m/2 | | x+0.2(x+2)=4 | | 432-(8*24)=x | | (4+34)=(8x-2) | | 3b^2-6=-7b | | 9x+-4=-2x+3 | | 6x1/2-2=-12=+13=1 |

Equations solver categories