If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8=18+(3/8)(16-40x)
We move all terms to the left:
8-(18+(3/8)(16-40x))=0
Domain of the equation: 8)(16-40x))!=0We add all the numbers together, and all the variables
x∈R
-(18+(+3/8)(-40x+16))+8=0
We multiply parentheses ..
-(18+(-120x^2+3/8*16))+8=0
We multiply all the terms by the denominator
-(18+(-120x^2+3+8*8*16))=0
We calculate terms in parentheses: -(18+(-120x^2+3+8*8*16)), so:We get rid of parentheses
18+(-120x^2+3+8*8*16)
determiningTheFunctionDomain (-120x^2+3+8*8*16)+18
We get rid of parentheses
-120x^2+3+18+8*8*16
We add all the numbers together, and all the variables
-120x^2+1045
Back to the equation:
-(-120x^2+1045)
120x^2-1045=0
a = 120; b = 0; c = -1045;
Δ = b2-4ac
Δ = 02-4·120·(-1045)
Δ = 501600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{501600}=\sqrt{400*1254}=\sqrt{400}*\sqrt{1254}=20\sqrt{1254}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{1254}}{2*120}=\frac{0-20\sqrt{1254}}{240} =-\frac{20\sqrt{1254}}{240} =-\frac{\sqrt{1254}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{1254}}{2*120}=\frac{0+20\sqrt{1254}}{240} =\frac{20\sqrt{1254}}{240} =\frac{\sqrt{1254}}{12} $
| 26x35= | | 48=2w+12 | | 5x+22-(5x+12)=x+1 | | 2x-6/3-1=3 | | 2-(x-6)=18 | | 4(v-5)-3=-7(-3v+5)-9v | | 4x(2)+6x-3=0 | | -5x–6=1 | | 3x+47+6x-25=270 | | 2x+5-4x=10x+9+3 | | -(-4-12x)-10=6(x-5) | | 2(-4m-5)=16 | | -2(2x+3=-4(1x+1)-2 | | 4(x-2)=13-3x | | 8x+-3=1x+2 | | 3(-7)=-21+3x | | 0.1x=0.2(x2) | | 2(x-3)-3(x+2)=14 | | 1/3(9x+3x)=3x+1 | | 50=8+m/2 | | x+0.2(x+2)=4 | | 432-(8*24)=x | | (4+34)=(8x-2) | | 3b^2-6=-7b | | 9x+-4=-2x+3 | | 6x1/2-2=-12=+13=1 | | 6x-3+3x+12=180 | | 1.50=35.50y | | 3(-2x+40)=-6x-12 | | 9-2x=-7x+34 | | 9x+-4=2x+-3 | | 8–7w=3w+9 |