(x+1)-(x-1)=6x(x-3)

Simple and best practice solution for (x+1)-(x-1)=6x(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)-(x-1)=6x(x-3) equation:



(x+1)-(x-1)=6x(x-3)
We move all terms to the left:
(x+1)-(x-1)-(6x(x-3))=0
We get rid of parentheses
x-x-(6x(x-3))+1+1=0
We calculate terms in parentheses: -(6x(x-3)), so:
6x(x-3)
We multiply parentheses
6x^2-18x
Back to the equation:
-(6x^2-18x)
We add all the numbers together, and all the variables
-(6x^2-18x)+2=0
We get rid of parentheses
-6x^2+18x+2=0
a = -6; b = 18; c = +2;
Δ = b2-4ac
Δ = 182-4·(-6)·2
Δ = 372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{372}=\sqrt{4*93}=\sqrt{4}*\sqrt{93}=2\sqrt{93}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{93}}{2*-6}=\frac{-18-2\sqrt{93}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{93}}{2*-6}=\frac{-18+2\sqrt{93}}{-12} $

See similar equations:

| 3x^-12x-13=4 | | 36-9x=x^2 | | 5x^+12x+79=3x+72 | | |x-32|=4.7 | | 2.5+0.15p=0.4 | | 3x+3x=1/5 | | -8(2x+9)=20-12x | | 23x-7=13x+50 | | 4(4)=3(2b-15) | | 3x+Y=122 | | 1/4z=-21/2 | | 3.25z=-32.5 | | 3.25z=-3.25 | | 8x=1+6+23 | | 2x+8=18x+2 | | 4x8.2=15.8 | | 5x-(3x-5)=23 | | x-4=-53x+2=15 | | 14x+4=12x(x+2) | | 5(1-x)-6(x-3x-7)=x(x-3)-2x(x+5)-2 | | 1/3x+1/3x+x+x=140 | | 3.5x-2=20 | | 4x+1*x=3^x*5 | | 8x+1=13x(x+5) | | 3/x=3/5x=4 | | 3x+x+2x=192 | | 21+x=36 | | 3-4x/8=9 | | (X+3)(x-1)=650 | | 1/3x=108 | | 5a+7=8a+1 | | v−13.38=6.62 |

Equations solver categories