If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(1-x)-6(x-3x-7)=x(x-3)-2x(x+5)-2
We move all terms to the left:
5(1-x)-6(x-3x-7)-(x(x-3)-2x(x+5)-2)=0
We add all the numbers together, and all the variables
5(-1x+1)-6(-2x-7)-(x(x-3)-2x(x+5)-2)=0
We multiply parentheses
-5x+12x-(x(x-3)-2x(x+5)-2)+5+42=0
We calculate terms in parentheses: -(x(x-3)-2x(x+5)-2), so:We add all the numbers together, and all the variables
x(x-3)-2x(x+5)-2
We multiply parentheses
x^2-2x^2-3x-10x-2
We add all the numbers together, and all the variables
-1x^2-13x-2
Back to the equation:
-(-1x^2-13x-2)
-(-1x^2-13x-2)+7x+47=0
We get rid of parentheses
1x^2+13x+7x+2+47=0
We add all the numbers together, and all the variables
x^2+20x+49=0
a = 1; b = 20; c = +49;
Δ = b2-4ac
Δ = 202-4·1·49
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{51}}{2*1}=\frac{-20-2\sqrt{51}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{51}}{2*1}=\frac{-20+2\sqrt{51}}{2} $
| 1/3x+1/3x+x+x=140 | | 3.5x-2=20 | | 4x+1*x=3^x*5 | | 8x+1=13x(x+5) | | 3/x=3/5x=4 | | 3x+x+2x=192 | | 21+x=36 | | 3-4x/8=9 | | (X+3)(x-1)=650 | | 1/3x=108 | | 5a+7=8a+1 | | v−13.38=6.62 | | 36=8x+(1/3x) | | h−8=8.2 | | 2^2+3x+2=0 | | (x+10)(x+3)=120 | | (8+x)1/3=36 | | (8+x)+1/3x=36 | | 5(4x+2)-2x=1 | | 36=8+x(1/3) | | 16x+10=38 | | 8+1/3x=36 | | 8x+1/3x=36 | | 12-4x=-11 | | s+6=1 | | X+1/3y+8=36 | | x^2+12=2^x+5 | | 4x-(-5)=25 | | (1/x^2)=(1/15) | | 100+7x=2 | | 5.1=y/4 | | 5×+4y=-6 |