If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5-x)(x-3)-(x+3)(x-5)=5
We move all terms to the left:
(5-x)(x-3)-(x+3)(x-5)-(5)=0
We add all the numbers together, and all the variables
(-1x+5)(x-3)-(x+3)(x-5)-5=0
We multiply parentheses ..
(-1x^2+3x+5x-15)-(x+3)(x-5)-5=0
We get rid of parentheses
-1x^2+3x+5x-(x+3)(x-5)-15-5=0
We multiply parentheses ..
-1x^2-(+x^2-5x+3x-15)+3x+5x-15-5=0
We add all the numbers together, and all the variables
-1x^2-(+x^2-5x+3x-15)+8x-20=0
We get rid of parentheses
-1x^2-x^2+5x-3x+8x+15-20=0
We add all the numbers together, and all the variables
-2x^2+10x-5=0
a = -2; b = 10; c = -5;
Δ = b2-4ac
Δ = 102-4·(-2)·(-5)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{15}}{2*-2}=\frac{-10-2\sqrt{15}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{15}}{2*-2}=\frac{-10+2\sqrt{15}}{-4} $
| -6+5d=5d+3+d | | -4(a+2)=5(3a-1)+16 | | 5/2x=15/4 | | 3(6x+8)=28+18x | | -4j-4=-5j+3 | | 3(6x+8)=24+18x) | | -4j−4=-5j+3 | | 6(c+3)-2=5(c+4) | | 6(c+3)-2=5(c+4 | | 2-4z=-5z+9 | | 2−4z=-5z+9 | | 7-3u=-5-7u | | 3(4b-6)=2(2b+4)-10 | | 7−3u=-5−7u | | 21=7/5u | | -10+5j=6j | | 2(3a+5)=3(4a-3)+1 | | -2t=-3t-10 | | 2X-3/4-2x-1/3=1 | | 6x+(x+1)=29 | | 13-4x=39-2x | | 5t+8=t12 | | 90=x+1+6x | | (12-4p)2-4(4)(15-5p)=0 | | 4y=12+4 | | 3y-5=y/10 | | 3x+1=-4/x-2 | | 9x+23=4x=83 | | T=12,5t+8 | | 2x-15=64 | | 0.1(w+5)+2w=0.2(w-4) | | 1/5x+7=-9 |