If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x-5)2+5x=(x-8)(x+1)+20
We move all terms to the left:
(3x-5)2+5x-((x-8)(x+1)+20)=0
We add all the numbers together, and all the variables
5x+(3x-5)2-((x-8)(x+1)+20)=0
We multiply parentheses
5x+6x-((x-8)(x+1)+20)-10=0
We multiply parentheses ..
-((+x^2+x-8x-8)+20)+5x+6x-10=0
We calculate terms in parentheses: -((+x^2+x-8x-8)+20), so:We add all the numbers together, and all the variables
(+x^2+x-8x-8)+20
We get rid of parentheses
x^2+x-8x-8+20
We add all the numbers together, and all the variables
x^2-7x+12
Back to the equation:
-(x^2-7x+12)
11x-(x^2-7x+12)-10=0
We get rid of parentheses
-x^2+11x+7x-12-10=0
We add all the numbers together, and all the variables
-1x^2+18x-22=0
a = -1; b = 18; c = -22;
Δ = b2-4ac
Δ = 182-4·(-1)·(-22)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{59}}{2*-1}=\frac{-18-2\sqrt{59}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{59}}{2*-1}=\frac{-18+2\sqrt{59}}{-2} $
| (3x-5)2+5x=(x-8)(x+1)+20 | | (3x-5)2+5x=(x-8)(x+1)+20 | | (3x-5)2+5x=(x-8)(x+1)+20 | | -2x-7=-2x-2 | | -2x-7=-2x-2 | | -2x-7=-2x-2 | | -2x-7=-2x-2 | | -2x-7=-2x-2 | | 8x+124=108 | | 8x+124=108 | | 8x+124=108 | | 8x+124=108 | | 8x+124=108 | | 9-a=2a | | -0.4(y+3)=16 | | 8x+5=-3+5x+17 | | 6x+2=16-2x | | 6m(3m+21)=9( | | 25=40(0.5^x) | | 4.3/x=-7.8 | | X-2+5x-27+2x+3=90 | | X-2+5x-27+2x+3=180 | | X-2+5x-27+2x+3=180 | | (4r+12/8)=(5r-10/5) | | 32=x+25 | | 22-8x=2x=9 | | (x-20)+21+42+29+(x+14)+x(x-10)=1260 | | 12y-7=113/y= | | 2x(x-3)=0.25 | | 1253x-2=254x+10 | | 22x-2x-6=0 | | 22x-2x-6=0 |