(x-20)+21+42+29+(x+14)+x(x-10)=1260

Simple and best practice solution for (x-20)+21+42+29+(x+14)+x(x-10)=1260 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-20)+21+42+29+(x+14)+x(x-10)=1260 equation:



(x-20)+21+42+29+(x+14)+x(x-10)=1260
We move all terms to the left:
(x-20)+21+42+29+(x+14)+x(x-10)-(1260)=0
We add all the numbers together, and all the variables
(x-20)+(x+14)+x(x-10)-1168=0
We multiply parentheses
x^2+(x-20)+(x+14)-10x-1168=0
We get rid of parentheses
x^2+x+x-10x-20+14-1168=0
We add all the numbers together, and all the variables
x^2-8x-1174=0
a = 1; b = -8; c = -1174;
Δ = b2-4ac
Δ = -82-4·1·(-1174)
Δ = 4760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4760}=\sqrt{4*1190}=\sqrt{4}*\sqrt{1190}=2\sqrt{1190}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{1190}}{2*1}=\frac{8-2\sqrt{1190}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{1190}}{2*1}=\frac{8+2\sqrt{1190}}{2} $

See similar equations:

| 12y-7=113/y= | | 2x(x-3)=0.25 | | 1253x-2=254x+10 | | 22x-2x-6=0 | | 22x-2x-6=0 | | 3.2x+2x-2=26 | | 3.2x+2x-2=26 | | 3.2x+2x-2=26 | | 7x+1=-5x-17 | | 11.1+13.9-40=m | | (2m+1)=0 | | 3.9x+1=27-x | | (3x+2)+(x+5)+2x(2x+1)=540 | | (3x+2)+(x+5)+2x(2x+1)=540 | | (3x+2)+(x+5)+2x(2x+1)=540 | | 40n=8×35= | | 40n=8×35 | | -122=-62a+7-8 | | -122=-62a+7-8 | | -122=-62a+7-8 | | -122=-62a+7-8 | | -122=-62a+7-8 | | y=2/5+(-4) | | -122=-62a+7-8 | | -122=-62a+7-8 | | -122=-62a+7-8 | | y=-5+(-9) | | -30=2-4n | | 34+0.44w=0.5 | | 6/x=100/87 | | 7/x-4x+6=18 | | 9x²-3x=180 |

Equations solver categories