(3x-14)(2x+15)=(x-7)

Simple and best practice solution for (3x-14)(2x+15)=(x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-14)(2x+15)=(x-7) equation:



(3x-14)(2x+15)=(x-7)
We move all terms to the left:
(3x-14)(2x+15)-((x-7))=0
We multiply parentheses ..
(+6x^2+45x-28x-210)-((x-7))=0
We calculate terms in parentheses: -((x-7)), so:
(x-7)
We get rid of parentheses
x-7
Back to the equation:
-(x-7)
We get rid of parentheses
6x^2+45x-28x-x-210+7=0
We add all the numbers together, and all the variables
6x^2+16x-203=0
a = 6; b = 16; c = -203;
Δ = b2-4ac
Δ = 162-4·6·(-203)
Δ = 5128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5128}=\sqrt{4*1282}=\sqrt{4}*\sqrt{1282}=2\sqrt{1282}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{1282}}{2*6}=\frac{-16-2\sqrt{1282}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{1282}}{2*6}=\frac{-16+2\sqrt{1282}}{12} $

See similar equations:

| 61+5y-23=17y-11-5y | | 25t=6 | | (3x-14)(2x=15)=(x-7) | | 2(4z+3)-8=64 | | 19+r=15 | | -35=8x-6x-25 | | 7(x—5)=5(x+3) | | 7x-10=6x+5 | | -3a+6+9a=8a-5a | | x^2+14x+55=10 | | n2+13n+22=7 | | y/7+2=-17 | | 20/9w-8=4/w | | 16+24=5(9x-8) | | -10y+3=-4-9y | | -2(d–13)=-14 | | 1000+50x=250+25x | | 6(1-6n)=-210 | | 8x=330 | | -16+24=-4(x+6) | | 75−(3×m)=27 | | Y-55=3-9(y+2) | | 56=y+6y | | 8h-10h=3h+12 | | -20x–15=5 | | -88=2(5p-4) | | 6x-18=8x+6 | | 2t-5=t+4 | | a/3+15/12=9/4 | | 1.3r=50.78) | | 57-x=206 | | (15x+1)=(7x+3) |

Equations solver categories