If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+13n+22=7
We move all terms to the left:
n2+13n+22-(7)=0
We add all the numbers together, and all the variables
n^2+13n+15=0
a = 1; b = 13; c = +15;
Δ = b2-4ac
Δ = 132-4·1·15
Δ = 109
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{109}}{2*1}=\frac{-13-\sqrt{109}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{109}}{2*1}=\frac{-13+\sqrt{109}}{2} $
| y/7+2=-17 | | 20/9w-8=4/w | | 16+24=5(9x-8) | | -10y+3=-4-9y | | -2(d–13)=-14 | | 1000+50x=250+25x | | 6(1-6n)=-210 | | 8x=330 | | -16+24=-4(x+6) | | 75−(3×m)=27 | | Y-55=3-9(y+2) | | 56=y+6y | | 8h-10h=3h+12 | | -20x–15=5 | | -88=2(5p-4) | | 6x-18=8x+6 | | 2t-5=t+4 | | a/3+15/12=9/4 | | 1.3r=50.78) | | 57-x=206 | | (15x+1)=(7x+3) | | 9(b+1)=9 | | 69=3ww= | | 31-u=169 | | 9x+9=7x-5 | | -2x-45+6x=27 | | r2-8r=-8 | | 5(q+1)=5 | | v-44=159 | | 32=12+4z(z-1) | | 7(x-1)=9x+1 | | 27-u=214 |