(2x-1)/5x=(6x-2)/(9x+2)

Simple and best practice solution for (2x-1)/5x=(6x-2)/(9x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-1)/5x=(6x-2)/(9x+2) equation:



(2x-1)/5x=(6x-2)/(9x+2)
We move all terms to the left:
(2x-1)/5x-((6x-2)/(9x+2))=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: (9x+2))!=0
x∈R
We calculate fractions
((2x-1)*(9x+2)))/55x^2+(-((6x-2)*5x)/55x^2=0
We calculate fractions
(((2x-1)*(9x+2)))*55x^2)/(55x^2+(*55x^2)+(-((6x-2)*5x)*55x^2)/(55x^2+(*55x^2)=0
We calculate terms in parentheses: +(-((6x-2)*5x)*55x^2)/(55x^2+(*55x^2), so:
-((6x-2)*5x)*55x^2)/(55x^2+(*55x^2
We multiply all the terms by the denominator
-((6x-2)*5x)*55x^2)+((*55x^2)*(55x^2
Back to the equation:
+(-((6x-2)*5x)*55x^2)+((*55x^2)*(55x^2)
We get rid of parentheses
(((2x-1)*(9x+2)))*55x^2)/(55x^2+*55x^2+(-((6x-2)*5x)*55x^2)+((*55x^2)*55x^2=0
We multiply all the terms by the denominator
(((2x-1)*(9x+2)))*55x^2)+(*55x^2)*(55x^2+((-((6x-2)*5x)*55x^2))*(55x^2+(((*55x^2)*55x^2)*(55x^2=0

See similar equations:

| 0.1x+8.5=1.5 | | -8(5+2y)=23 | | 5c(3c-2)-7c=40-2c | | 3x^4-8x^3+1=0 | | x-4/3x-2=1 | | 6^(x+1)=78 | | 24x^2-48x+10=0 | | Ax2+125=2059 | | 2(3x+1)=-5(5x-2) | | 4x-8/3=8 | | q^2-8q=3 | | 5(x-4)+2=-13 | | 5x+5=11-1 | | 2p+10=16 | | -200=(x-30)(30-x) | | 1,048,576×64×x^2=256^2x | | 8(2x-5)-6(3x+7)=○ | | 13x+5=5x+9 | | 15=4x2^1.2x | | Y=10x2+28x-3 | | Y=7x2+28x-3 | | x-0.1x-0.0191x=50000 | | x²+x-1024=0 | | x-2x-3x=120 | | x²+x+1024=0 | | -t+20=25 | | √+3-√7-x=2 | | 4x-3(x+1)=-3x+4(x+3)+5x | | 12*16/100=12*d/150 | | 12*16/100=12*x/150 | | X=x+216 | | 14x-2+5x=10+7x |

Equations solver categories