Ax2+125=2059

Simple and best practice solution for Ax2+125=2059 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Ax2+125=2059 equation:



A2+125=2059
We move all terms to the left:
A2+125-(2059)=0
We add all the numbers together, and all the variables
A^2-1934=0
a = 1; b = 0; c = -1934;
Δ = b2-4ac
Δ = 02-4·1·(-1934)
Δ = 7736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7736}=\sqrt{4*1934}=\sqrt{4}*\sqrt{1934}=2\sqrt{1934}$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1934}}{2*1}=\frac{0-2\sqrt{1934}}{2} =-\frac{2\sqrt{1934}}{2} =-\sqrt{1934} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1934}}{2*1}=\frac{0+2\sqrt{1934}}{2} =\frac{2\sqrt{1934}}{2} =\sqrt{1934} $

See similar equations:

| 2(3x+1)=-5(5x-2) | | 4x-8/3=8 | | q^2-8q=3 | | 5(x-4)+2=-13 | | 5x+5=11-1 | | 2p+10=16 | | -200=(x-30)(30-x) | | 1,048,576×64×x^2=256^2x | | 8(2x-5)-6(3x+7)=○ | | 13x+5=5x+9 | | 15=4x2^1.2x | | Y=10x2+28x-3 | | Y=7x2+28x-3 | | x-0.1x-0.0191x=50000 | | x²+x-1024=0 | | x-2x-3x=120 | | x²+x+1024=0 | | -t+20=25 | | √+3-√7-x=2 | | 4x-3(x+1)=-3x+4(x+3)+5x | | 12*16/100=12*d/150 | | 12*16/100=12*x/150 | | X=x+216 | | 14x-2+5x=10+7x | | 5+z-3=3z= | | 0=12+2(x-10) | | 9x+2=6x+35 | | 4-4/5x=2/3x-3 | | v=36*35/6 | | -4u(u-3)(u-7)=0 | | -3x-7=5x | | 1/2x+1=13 |

Equations solver categories