If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-200=(x-30)(30-x)
We move all terms to the left:
-200-((x-30)(30-x))=0
We add all the numbers together, and all the variables
-((x-30)(-1x+30))-200=0
We multiply parentheses ..
-((-1x^2+30x+30x-900))-200=0
We calculate terms in parentheses: -((-1x^2+30x+30x-900)), so:We get rid of parentheses
(-1x^2+30x+30x-900)
We get rid of parentheses
-1x^2+30x+30x-900
We add all the numbers together, and all the variables
-1x^2+60x-900
Back to the equation:
-(-1x^2+60x-900)
1x^2-60x+900-200=0
We add all the numbers together, and all the variables
x^2-60x+700=0
a = 1; b = -60; c = +700;
Δ = b2-4ac
Δ = -602-4·1·700
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-20\sqrt{2}}{2*1}=\frac{60-20\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+20\sqrt{2}}{2*1}=\frac{60+20\sqrt{2}}{2} $
| 1,048,576×64×x^2=256^2x | | 8(2x-5)-6(3x+7)=○ | | 13x+5=5x+9 | | 15=4x2^1.2x | | Y=10x2+28x-3 | | Y=7x2+28x-3 | | x-0.1x-0.0191x=50000 | | x²+x-1024=0 | | x-2x-3x=120 | | x²+x+1024=0 | | -t+20=25 | | √+3-√7-x=2 | | 4x-3(x+1)=-3x+4(x+3)+5x | | 12*16/100=12*d/150 | | 12*16/100=12*x/150 | | X=x+216 | | 14x-2+5x=10+7x | | 5+z-3=3z= | | 0=12+2(x-10) | | 9x+2=6x+35 | | 4-4/5x=2/3x-3 | | v=36*35/6 | | -4u(u-3)(u-7)=0 | | -3x-7=5x | | 1/2x+1=13 | | 7+5x-3x=2 | | 12x-8/8=14 | | 5(2x-7)+3x=4x | | 3-(2+x)=x+3 | | 2/3x+2=-1/2x-8 | | 8k-3=4k+21 | | X+3/4-9x/8=6 |