(2*3.14*r*r)+(2*3.14*r*10)=440

Simple and best practice solution for (2*3.14*r*r)+(2*3.14*r*10)=440 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2*3.14*r*r)+(2*3.14*r*10)=440 equation:



(2*3.14r*r)+(2*3.14r*10)=440
We move all terms to the left:
(2*3.14r*r)+(2*3.14r*10)-(440)=0
We add all the numbers together, and all the variables
(+2*3.14r*r)+(+2*3.14r*10)-440=0
We get rid of parentheses
2*3.14r*r+2*3.14r*10-440=0
Wy multiply elements
6r^2+60r-440=0
a = 6; b = 60; c = -440;
Δ = b2-4ac
Δ = 602-4·6·(-440)
Δ = 14160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14160}=\sqrt{16*885}=\sqrt{16}*\sqrt{885}=4\sqrt{885}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{885}}{2*6}=\frac{-60-4\sqrt{885}}{12} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{885}}{2*6}=\frac{-60+4\sqrt{885}}{12} $

See similar equations:

| 2(4x-1)-4(-x-7)=5 | | 2(4x-1)-4(x-7)=5 | | 2(4x-2)-4(x+7)=5 | | 2(4x-2)-4(x-28)=5 | | 3x^2+.167x-3.167=0 | | 5(4c-1)=3c(2c-2) | | 5-1=3x+9 | | X^2+7x-29=-41 | | 0,0025x^2+0,000018x-0,000018=0 | | 6x=+4=11 | | x/2+8/4=8 | | x+2(x-2)=(x-2)=22 | | 3x+8=-5x-44 | | 2b(b-1)=3(b-2) | | x^2+49x-70=0 | | (x)+(2x)/(3)=(18) | | (x)+(2x)/3=18 | | t-38=-15 | | 5-1/x=1 | | (x+1)(3x-1`)=40 | | -7m+11+8m=-5 | | 6(3x+4)-2=3(2x+x) | | 5^(x+1)+5^(x)=150 | | X²-180x=20736 | | 2a-4+2a=3a-4 | | 8(-5-2t)=5(7-3t) | | 7n-20=2(n+10) | | x-20=2x-15 | | x+85=2x-15 | | 3r−14=23 | | x2+10x−96=0 | | 2x-15=x+85 |

Equations solver categories