5(4c-1)=3c(2c-2)

Simple and best practice solution for 5(4c-1)=3c(2c-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(4c-1)=3c(2c-2) equation:



5(4c-1)=3c(2c-2)
We move all terms to the left:
5(4c-1)-(3c(2c-2))=0
We multiply parentheses
20c-(3c(2c-2))-5=0
We calculate terms in parentheses: -(3c(2c-2)), so:
3c(2c-2)
We multiply parentheses
6c^2-6c
Back to the equation:
-(6c^2-6c)
We get rid of parentheses
-6c^2+20c+6c-5=0
We add all the numbers together, and all the variables
-6c^2+26c-5=0
a = -6; b = 26; c = -5;
Δ = b2-4ac
Δ = 262-4·(-6)·(-5)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{139}}{2*-6}=\frac{-26-2\sqrt{139}}{-12} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{139}}{2*-6}=\frac{-26+2\sqrt{139}}{-12} $

See similar equations:

| 5-1=3x+9 | | X^2+7x-29=-41 | | 0,0025x^2+0,000018x-0,000018=0 | | 6x=+4=11 | | x/2+8/4=8 | | x+2(x-2)=(x-2)=22 | | 3x+8=-5x-44 | | 2b(b-1)=3(b-2) | | x^2+49x-70=0 | | (x)+(2x)/(3)=(18) | | (x)+(2x)/3=18 | | t-38=-15 | | 5-1/x=1 | | (x+1)(3x-1`)=40 | | -7m+11+8m=-5 | | 6(3x+4)-2=3(2x+x) | | 5^(x+1)+5^(x)=150 | | X²-180x=20736 | | 2a-4+2a=3a-4 | | 8(-5-2t)=5(7-3t) | | 7n-20=2(n+10) | | x-20=2x-15 | | x+85=2x-15 | | 3r−14=23 | | x2+10x−96=0 | | 2x-15=x+85 | | 2x-15=x-20 | | 58×54=5m | | 3w+16=2w+9 | | a÷30=120 | | a-28=135 | | 75-4x=8-10x |

Equations solver categories