If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/y+1)+1/(y+2)=2/y+3
We move all terms to the left:
(1/y+1)+1/(y+2)-(2/y+3)=0
Domain of the equation: y+1)!=0
y∈R
Domain of the equation: (y+2)!=0
We move all terms containing y to the left, all other terms to the right
y!=-2
y∈R
Domain of the equation: y+3)!=0We get rid of parentheses
y∈R
1/y+1/(y+2)-2/y+1-3=0
We calculate fractions
(-2y-3)/(y^2+2y)+y/(y^2+2y)+1-3=0
We add all the numbers together, and all the variables
(-2y-3)/(y^2+2y)+y/(y^2+2y)-2=0
We multiply all the terms by the denominator
(-2y-3)+y-2*(y^2+2y)=0
We add all the numbers together, and all the variables
y+(-2y-3)-2*(y^2+2y)=0
We multiply parentheses
-2y^2+y+(-2y-3)-4y=0
We get rid of parentheses
-2y^2+y-2y-4y-3=0
We add all the numbers together, and all the variables
-2y^2-5y-3=0
a = -2; b = -5; c = -3;
Δ = b2-4ac
Δ = -52-4·(-2)·(-3)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-1}{2*-2}=\frac{4}{-4} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+1}{2*-2}=\frac{6}{-4} =-1+1/2 $
| (1/y+1)+1/y+2))=2/y+3 | | 3,5x+2=2,9-1 | | 1/5x+5=20 | | 6y-12=-16 | | 1/2m+9=5 | | 6s+28=160 | | 13x-55=6x+8 | | 64x+31=60x+95 | | 14x-36=6x+12 | | 1/2(x-5)+5/2=1/4(x-4) | | 4(y-15)=3(y+15) | | 2/6v=6 | | x2-24x-288=0 | | 4^x=8 | | 4^x=1 | | 4^x-8=0 | | 25q=200 | | 2x3+5x2-3x=0 | | (7)z=5(z-10)+3 | | 2(3)-y=y-6(3) | | 11-n=31+3n | | 3x+2x=-50 | | y2-3y=6 | | 1/5m+9=(3) | | 1/5m+9=(-27) | | 3/5m+9=(-27) | | 3z-9=8 | | 4y+30=7 | | (64)y÷6=8(2) | | 262.144y÷6=8(2) | | -3n-7=2/3(2-5n) | | 2(z-8)+16=-36 |